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resulting in a Planck-scale axion.
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1. Introduction

The cosmological constant problem can be divided into three questions: A) Why did no

relic vacuum energy density of Planckian magnitude survive the Planckian epoch until

today? B) What is the mechanism that prevents the regeneration of vacuum energy in

terms of the quantum fluctuations inherent to the matter sector of the Universe for sub-

Planckian cosmology? C) Why is today’s value of the vacuum energy density nonvanishing

yet extremely small compared to particle physics scales? If cosmological inflation indeed

has occurred with a mean vacuum energy density of Planckian magnitude, then problem A

addresses the question what the mechanism for the complete extinction of inflation is. It is

suggestive that consequences of a subtle symmetry principle are at work here. Problem B

may pose itself due to our insufficient understanding of the nature of elementary particles

and their ground state (for a related discussion see [1, 2]). If a symmetry is responsible for

the solution to problem A, then problem C must be related to a slight and explicit violation

of this symmetry. Indeed, as discussed in [3], the solution to problem C may be rooted in

the chiral anomaly [4 – 7], which by virtue of topologically nontrivial field configurations

of Yang-Mills theories breaks an exact, nonlinearly represented global symmetry UA(1).

The existence of a Planck-scale axion field (with Peccei-Quinn scale ∼ MP , see also [8])

in connection with an SU(2) Yang-Mills theory describing photon propagation may be

responsible for the thus far unexplained components entering the equation of state of the

present Universe [3]. While the existence of a flavor-neutral chiral pseudo-Goldstone field

had to be assumed in [3], we will show in the present work how this field naturally emerges
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as a consequence of gravitationally induced, chirally-invariant fermion interactions. At the

same time, the consequences of these interactions address problem A. Interesting ideas

in this respect, which in fact have stimulated the present work, are expressed in [9] (for

a review see [10] and references therein). Ideas on how gravitationally induced chiral

symmetry breaking could possibly relax a pre-existing cosmological constant can also be

found in [11, 12].

In this article we study the cosmological implications of gravitationally induced,

chirally-invariant four-fermion interactions in four dimensions. In [13] it was shown that a

quartic interaction of the form

−3πG

2

γ2

γ2 + 1

(

ψ̄γ5γaψ
)2
, (1.1)

where G is Newton’s constant and γ the Immirzi parameter, arises when the Holst ac-

tion [14] is used to classically eliminate the torsion-induced, nonlocal interaction be-

tween fermions. Here we consider a scenario in which N massless (chiral) fermions,

ψT = (ψ1, ψ2, . . . , ψN ), with a flavor symmetry UV (N) × UA(N) are present in the very

early Universe. We work in a de Sitter spacetime sourced both by the fermion dynam-

ics and a bare cosmological constant. We first address the question whether gravity can

generate a chiral condensate of these fermions. By applying a Fierz transformation to

the fermion fields, we show that a chiral condensate emerges if γ is purely imaginary and

|γ| < 1, in which case the interaction (1.1) is attractive. In fact, when considering the cos-

mological evolution in the sub-Planckian regime (H < MP , with H the Hubble parameter

and MP = ( 3
8πG)1/2 the reduced Planck mass), only the attractive scalar channel matters.

Apart from flavor-nonsinglet fields, a massive scalar isosinglet field and a massless pseu-

doscalar isosinglet (Goldstone) field emerge. The massive scalar plays the dominant role

in the cosmological evolution. As a consequence, we observe that for H < MP any posi-

tive vacuum energy density vanishes in the large-N limit. The mean-field approximation

underlying our analysis of the gap equation becomes exact in this limit.

In section 2 we briefly recall how a gravitationally induced, chirally invariant, and

local four-fermion interaction emerges starting with the Holst action. We then apply a

Fierz transformation to this interaction and study the properties of the scalar and pseu-

doscalar channels. Subsequently we integrate out the fermions in a de Sitter background

and consider the minimum of the emerging effective potential. We also discuss possible

regularization schemes and how they influence the properties of the effective potential. In

section 3 we (algebraically) solve the Friedmann equation for de Sitter spacetime and show

that in the large-N limit the Planckian vacuum energy density is driven to zero. We then

discuss the possible role of the flavor-singlet Planck-scale axion field in late-time cosmology.

Finally, in section 4 we summarize our work and present some conclusions.
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2. Theoretical set-up

2.1 Gravitationally induced four-fermion interactions

We consider purely gravitational dynamics as given by the Holst action [14]

S[e,A] =
1

16πG

(
∫

d4x e eµa e
ν
b F

ab
µν − 1

γ

∫

d4x e eµa e
ν
b F̃

ab
µν

)

, (2.1)

which is a functional of the tetrad field eaµ [15]. Here a = 0, 1, 2, 3 is the internal Lorentz

index, µ = 0, 1, 2, 3 the coordinate index, and e ≡ det eµa . F ab
µν is the curvature of the

connection Aµ
cd defined as

Aµ
cd = eνc

(

eµd,ν − Γµ
ρν e

ρ
d

)

, (2.2)

and Γµ
ρν are the Christoffel symbols. F̃ ab

µν = 1
2
ǫab

cd F
cd
µν is the (internal) dual field strength.

Note that the Immirzi parameter γ can either be real (leading to the Barbero connec-

tion [16]) or imaginary (γ = i leads to the self-dual Ashtekar connection [15]).

The first term in (2.1) yields the tetrad formulation (Palatini action) of the Einstein-

Hilbert action, the latter emerging when inserting a solution to the associated equations of

motion (Aµ
cd being a torsion-free spin connection ωµ

cd[e]) into (2.1) and using gµν = eaµ eνa.

The second term is identically zero due to the Bianchi identity for the Riemann tensor.

It follows that, regardless of the value of γ, the action (2.1) is classically equivalent to

the familiar Einstein-Hilbert action [13]. This is reminiscent of the θ-angle in Quantum

Chromodynamics (QCD), which parameterizes the contributions of topology-changing fluc-

tuations to the partition function. In QCD the associated part of the action does not enter

the equations of motion if the absence of boundary terms can be assumed. As is the case

with θ in QCD, different choices of γ in (2.1) are physically not equivalent at the quantum

level [17].

What holds true for pure gravity is no longer valid if minimally coupled chiral fermions

are introduced. The equation of motion for the tetrad eµa subject to a fermionic source is

solved in terms of a connection Aµ
cd having two contributions, a torsion-free spin connection

for eµa (as in the purely gravitational case) and a torsion term related to the axial fermion

current. Upon substituting Aµ
cd back into the action, a four-fermion interaction of the

following form emerges [13]:

Sint =
K

2

∫

d4x e
(

ψ̄γ5γaψ
) (

ψ̄γ5γ
aψ

)

; K = −3πG
γ2

γ2 + 1
= − 9

8M2
P

γ2

γ2 + 1
. (2.3)

Thus the Immirzi parameter acquires physical relevance through the presence of massless

fermions, even though gravity is still treated classically. Notice that K becomes positive

for imaginary γ with |γ| < 1, and that it diverges for γ → ±i.

2.2 Effective action after integrating out ψ

The action describing the fermions reads

Sferm =

∫

d4x e

[

ψ̄ ieµaγ
aDµ[e]ψ +

K

2

(

ψ̄γ5γaψ
) (

ψ̄γ5γ
aψ

)

]

, (2.4)

– 3 –



J
H
E
P
0
2
(
2
0
0
8
)
0
7
7

where Dµ[e] is the covariant derivative with respect to the connection Aµ. We study the

system of interacting fermions in a de Sitter spacetime in FRW coordinates

ds2 = dt2 − a2(t) d~x · d~x , (2.5)

where a = a0 e
Ht is the scale factor. In this case the vierbein reads

eµa = δµ0 δa0 − a(t) δµi δai . (2.6)

The consideration of a de Sitter spacetime is justified in an epoch where the energy density

belonging to fluctuating degrees of freedom is sufficiently diluted as compared to the energy

density of condensed degrees of freedom.

As shown in the appendix, applying a Fierz transformation to the current-current

interaction in (2.3) yields

(

ψ̄γ5γaψ
) (

ψ̄γ5γ
aψ

)

→ 1

N

(

ψ̄ψ
)2

+
1

N

(

ψ̄iγ5ψ
)2

+ . . . , (2.7)

where the dots refer to flavor-nonsinglet contributions and products of vector and axial-

vector currents, which do not lead to vacuum condensates. Allowing for a bare cosmological

constant Λ0, and denoting the bare reduced Planck mass by M0, the complete action then

takes the form

S =

∫

d4x e

{

M2
0H

2 − Λ0 + ψ̄ ieµaγ
aDµ[e]ψ +

K

2N

[

(

ψ̄ψ
)2

+
(

ψ̄iγ5ψ
)2

+ . . .
]

}

, (2.8)

where only the scalar flavor-singlet bilinears are shown explicitly. For condensation to take

place K needs to be positive, implying an imaginary γ with |γ| < 1. In fact, only if K > 0

an attractive force occurs between fermions in the scalar channel [18]. In this case bound

states form: The operator ψ̄ψ corresponds to a scalar field σ, while ψ̄iγ5ψ corresponds

to a pseudoscalar field π. In addition, (N2 − 1) flavor-nonsinglet scalar and pseudoscalar

fields σk ∼ (ψ̄tkψ) and πk ∼ (ψ̄tkiγ5ψ) appear; they are ignored in our discussion (see

below). In the usual treatment of the Nambu-Jona-Lasinio model in Minkowski space [18]

the dynamical breaking of chiral symmetry occurs for sufficiently large K. As a result,

the scalar fields σ and σk become massive, while the pseudoscalar fields π and πk remain

massless and represent Goldstone bosons (see, e.g., [19] for a review).

As we will see below, in a de Sitter background dynamical chiral symmetry breaking

occurs for all values K > 0. Only the isosinglet fields are considered here. In fact, only

the isosinglet scalar field σ can acquire a nonzero vacuum expectation value and thus is

relevant for de Sitter cosmology in the early Universe. Also, only the isosinglet pseudoscalar

massless field π can be associated with a Planck-scale axion. It acquires a moderate mass

by interacting with the topologically nontrivial field configurations of Yang-Mills theories

in later epochs in the evolution of the Universe. In a de Sitter spacetime we expect that

the particles associated with the remaining low-lying flavor-nonsinglet fields are sufficiently

diluted to provide for the self-consistency of the de Sitter geometry. A detailed study of

the validity of this assumption is beyond the scope of the present work.
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On the technical side, the fields σ and π emerge when integrating out the fermions.

They are first introduced as auxiliary fields in the action:

S =

∫

d4x e

{

M2
0H

2 − Λ0 + ψ̄ ieµaγ
aDµ[e]ψ − N

2K

(

σ2 + π2
)

− ψ̄ (σ + iγ5π)ψ

}

. (2.9)

To lowest order in the 1/N expansion this is equivalent to the original action (2.8) [20].

We now introduce new variables ρ and ϕ as

ρ =
√

σ2 + π2 , tanϕ =
π

σ
. (2.10)

A chiral rotation, which on (σ, π) is represented by a fundamental SO(2) rotation with angle

α, acts on the complex field χ ≡ ρ eiϕ in terms of a U(1) phase shift: ϕ → ϕ + α. Upon

integrating out the fermion fields ψ, the chirally symmetric effective potential Veff depends

on ρ only, i.e., the Goldstone field ϕ is precisely massless. The problem of computing the

effective potential for a four-dimensional de Sitter spacetime was solved by Candelas and

Raine using dimensional regularization [21].1 An important observation made by these

authors is that the ultra-violet divergences occurring in evaluating TrG(x, x; ρ), where

G(x, x; ρ) is the propagator of a fermion of mass ρ in de Sitter spacetime, can be absorbed

by renormalizing the bare parameters Λ0 and M0. This fact hints toward a deep link

between four-dimensional gravity and the physics of gravitationally interacting, massless

fermions in the large-N limit. Recall that this limit is essential for the control of the mean-

field (classical) treatment (2.9) of the action (2.8). Note also that in Minkowski space

no such connection exists: There a four-fermion interaction is nonrenormalizable, and one

would have to introduce an ad hoc cutoff to tame divergent integrals.

We now discuss the renormalization of the parameters in the effective Lagrangian

in more detail, using dimensional regularization in n = 4 + 2ǫ spacetime dimensions to

regularize the ultra-violet divergences arising in the calculation. The starting point is the

dimensionally regularized action

S =

∫

dnx e

{

n(n− 1)

12
M2

0H
2 − Λ0 + ψ̄ ieµaγ

aDµ[e]ψ − N

2K
ρ2 − ψ̄ (σ + iγ5π)ψ

}

.

(2.11)

Following Candelas and Raine [21], who compute TrG(x, x; ρ) = −2e−1 ∂Leff

∂ρ associated

with this action as

TrG(x, x; ρ) = −2e−1 (2 + ǫ)
ρH2+2ǫ

(4π)2+ǫ

Γ
(

2 + ǫ+ i ρ
H

)

Γ
(

2 + ǫ− i ρ
H

)

Γ
(

1 + i ρ
H

)

Γ
(

1 − i ρ
H

) Γ(−1 − ǫ) , (2.12)

the renormalized effective Lagrangian can be written in the form

e−1Leff = M2
ren(µ)H2 − Λren(µ) −N Veff(ρ,H, µ) , (2.13)

where the renormalized Planck mass Mren and cosmological constant Λren are defined so

as to absorb the ultra-violet divergences arising in the calculation of the fermion determi-

nant in the de Sitter background. This is accomplished by asymptotically expanding the

1Problems with defining γ5 are absent due to the exact chiral symmetry.
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expression for e−1Leff in powers of H2 and observing that divergent coefficients occur only

at order H0 and H2. The resulting relations are2

Λ0 = µ2ǫ

[

Λren(µ) +
Nρ4

16π2

(

1

ǫ̂
+ cΛ

)]

,

M2
0 = µ2ǫ

[

M2
ren(µ) +

Nρ2

16π2

(

−2

ǫ̂
+ cM

)]

, (2.14)

where 1/ǫ̂ ≡ 1/ǫ+γE − ln 4π. The renormalization scale µ has been introduced so that the

renormalized parameters have the canonical scaling dimensions [Λren] = 4 and [M2
ren] = 2.

These parameters as well as the dimensionless quantities cΛ, cM depend on the choice of the

renormalization scheme. After eliminating the bare parameters in favor of the renormalized

ones, the effective action remains finite in the limit ǫ→ 0. The effective potential in (2.13)

is found to have the form

Veff(ρ,H, µ) =
ρ2

2K
+
H4

8π2

{

(

r2 +
r4

2

)

ln
µ2

H2
−

(

1

3
+
cM
2

)

r2 +

(

1

4
+
cΛ
2

)

r4

− 2

∫ r

0

dxx(1 + x2)
[

Ψ(1 + ix) + Ψ(1 − ix)
]

}

, (2.15)

where r = ρ/H, and Ψ(z) = d log Γ(z)/dz denotes the digamma function. The effective po-

tential depends on the Hubble parameterH due to the presence of the de Sitter background.

Note that the parameter K (related to the Immirzi parameter) is not renormalized.

As a brief interlude, it is instructive to work out the asymptotic behavior of the effective

potential for small and large values of the ratio r = ρ/H. This will allow us to make contact

with earlier discussions in the literature. For r ≪ 1 (small ρ at fixed H), we obtain

Veff(ρ,H, µ) =
ρ2

2K
+

1

8π2

{

ρ2H2

(

ln
µ2

H2
+ 2γE − 1

3
− cM

2

)

(2.16)

+ ρ4

(

1

2
ln
µ2

H2
+ γE − ζ3 +

1

4
+
cΛ
2

)

+
2ρ6

3H2
(ζ5 − ζ3) +O(ρ8/H4)

}

.

The terms proportional to H2 and H0 (apart form the classical term ρ2

2K ) can be eliminated

from the effective potential and absorbed into the renormalized parameters M2
ren(µ) and

Λren(µ) if one sets cM = 4γE − 2
3

and cΛ = 2(ζ3 − γE)− 1
2

and chooses the renormalization

scale as µ = H. This is the scheme choice adopted by Miao and Woodard [22]. Note

that the renormalized parameters Λren(H) and Gren(H) now depend logarithmically on

the Hubble parameter. In the opposite limit r ≫ 1 (large ρ for fixed H), we find

Veff(ρ,H, µ) =
ρ2

2K
+

1

8π2

{

ρ4

(

1

2
ln
µ2

ρ2
+

1

2
+
cΛ
2

)

+ ρ2H2

(

ln
µ2

ρ2
+

1

2
− cM

2

)

+H4

(

−11

60
ln

ρ2

H2
+ k

)

+
31H6

1260ρ2
+O(H8/ρ4)

}

, (2.17)

2An additional divergence proportional to H4 does not involve any fields and so has unobservable effects.

Its subtraction is defined by setting the lower integration limit in (2.15) to zero.
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where k ≈ −0.6832 is a (scheme-dependent [21]) constant. Once again the terms propor-

tional to H0 (apart from the classical term) and H2 can be eliminated from the effective

potential and absorbed into the renormalized parameters. This is accomplished if one sets

cΛ = −1 and cM = 1 and chooses the renormalization scale as µ = ρ. This scheme choice

is adopted by Candelas and Raine [21]. We stress that the physics is independent of these

scheme and scale choices; they merely correspond to a reshuffling of terms between the

effective potential and the renormalized parameters.

The definitions (2.14) imply the renormalization-group equations

dΛren(µ)

d lnµ2
= −Nρ4

16π2
,

dM2
ren(µ)

d lnµ2
=
Nρ2

8π2
, (2.18)

which show that the renormalized parameters Λren(µ) and M2
ren(µ) necessarily depend on ρ.

In general this dependence cannot be calculated; to expose its precise nature would require

an ultra-violet completion of the effective theory, in which divergences are regulated by

dynamics rather than by an unphysical regulator. Dimensional analysis suggests that the

ρ-dependent terms can be parameterized as

Λren(µ) = Λ − Nρ4

16π2

(

ln
µ2

ρ2
+ kΛ

)

, M2
ren(µ) = M2

P +
Nρ2

8π2

(

ln
µ2

ρ2
+ kM

)

, (2.19)

where Λ and M2
P are ρ-independent. These relations account for the correct scale and

scheme dependence if we require that the differences ci − ki (for i = Λ,M) are scheme

independent. The coefficients ki capture our ignorance about the ultra-violet completion

of the model. The appearance of ρ in the arguments of the logarithms is suggested by the

fact that this is the only physical scale available.

2.3 Gap equation

With our ansatz for the ρ-dependent terms in (2.19) we can now collect all ρ-dependent

terms in the Lagrangian (2.13) into the renormalization-scheme invariant effective potential

V̄eff(ρ,H) ≡ Veff(ρ,H, µ) − ρ4

16π2

(

ln
µ2

ρ2
+ kΛ

)

− ρ2H2

8π2

(

ln
µ2

ρ2
+ kM

)

. (2.20)

The explicit expression for V̄eff(ρ,H) is obtained by performing the substitutions µ → ρ

and ci → ci − ki in the expression for Veff(ρ,H, µ) in (2.15). The relevant asymptotic

expansions read

V̄eff(ρ,H) =
ρ2

2K
+
ρ2H2

8π2

(

ln
ρ2

H2
+ 2γE − 1

3
− cM − kM

2

)

+O(ρ4) (2.21)

for ρ≪ H, and

V̄eff(ρ,H) =
ρ2

2K
+

ρ4

16π2
(1 + cΛ − kΛ) +O(ρ2H2) (2.22)

for ρ ≫ H. As long as (cΛ − kΛ) > −1 the potential is bounded from below and tends to

infinity for ρ→ ∞. We must assume that this condition is satisfied in Nature. It can then

– 7 –
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Figure 1: Renormalization-scheme invariant effective potential with parameter choices H = MP ,

K = 20M−2

P
(solid) and H = 1.5MP , K = 10M−2

P
(dashed). We set ci = ki = 0.

be shown that the potential has a local maximum at ρ = 0 and a single minimum at some

positive value ρmin, which is determined by the solution of the equation

4π2

KH2
+

2

3
− cM − kM

2
+(1+cΛ − kΛ) r20 = (1+r20) [Ψ(1 + ir0) + Ψ(1 − ir0) − 2 ln r0] ;

r0 =
ρmin

H
. (2.23)

This minimum exists irrespective of the value and sign of K. This follows from the fact

that the right-hand side is a monotonically decreasing function of r0 starting at infinity

for r0 = 0, while the left-hand side is monotonically increasing and tends to infinity for

r0 → ∞. Figure 1 shows the shape of the effective potential for two sets of parameters.

At this point an important remark is in order. For consistency of the de Sitter calcula-

tion [21] the scalar field ρ needs to be homogeneous, such that the effective Lagrangian does

not contain a kinetic term for ρ. Note that while expression (2.9) does not contain such a

term, it can in principle be generated by the leading term in the derivative expansion of the

fermion determinant about an arbitrary field configuration ρ(x). Here we will assume that

after the fermions condense the dynamics quickly places the scalar field at the minimum

of the potential. With this assumption our derivation is self-consistent.

The gap equation follows from the stationarity condition for the effective poten-

tial (2.20) under variations of ρ:

∂Leff

∂ρ

!
= 0 ⇒ ∂V̄eff(ρ,H)

∂ρ
= 0 . (2.24)

Figure 2 shows the position of the minimum of the effective potential as a function of

the product KH2. For negative K the minimum is located at large ρmin = O(2π/
√
−K)

and is approximately independent of H. This branch is unphysical. It leads to a large

(Planck-scale) negative potential energy, which for N → ∞ is incompatible with a de

Sitter Universe (see the Friedmann equation (3.1) below). For positive K, on the other

hand, the minimum is located at small values of ρ/H. Keeping the first two terms in the

– 8 –
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Figure 2: Position of the minimum of the renormalization-scheme invariant effective potential as

a function of KH2. We set ci = ki = 0. The branch with KH2 < 0 is unphysical.

expansion (2.21), we obtain

ρ2
min = H2 exp

(

− 4π2

KH2
− C

)

, (2.25)

where we have defined the scheme-independent constant C = 2γE + 2
3

+ kM−cM

2
. Thus a

vacuum expectation value ρmin 6= 0 develops for each positive value of K, contrary to the

Minkowski case, where condensation occurs only if K exceeds a critical value [19]. Under

the reasonable assumption that KH2 ≪ 4π2 we find that ρmin ≪ H. This is consistent

with the determination of the minimum of the effective potential using the approximated

form (2.21). The minimum value is found to be

V̄eff(ρmin,H) = −ρ
2
minH

2

8π2
+O(ρ4

min) . (2.26)

3. Cosmological implications

3.1 Friedmann equation and relaxation of the expansion rate

The Friedmann equation for de Sitter spacetime subject to the renormalized cosmological

constant Λ and the energy density of the condensed scalar field ρ, resulting from the process

of integrating out the interacting fermions, reads

H2 =
1

M2
P

(

Λ +NV̄eff(ρmin,H)
)

. (3.1)

Introducing the dimensionless variables

h =
H

MP
, λ =

Λ

M4
P

, k = KM2
P , N̄ = N e−C , (3.2)

– 9 –



J
H
E
P
0
2
(
2
0
0
8
)
0
7
7

we obtain with (2.25) and (2.26)

λ = h2 +
N̄h4

8π2
exp

(

−4π2

kh2

)

. (3.3)

Note that our ignorance about the ultra-violet completion of the model hides in a harmless

O(1) rescaling of N . It is natural to assume that in these Planck units λ, k = O(1).

Relation (3.3) would then predict h ≈ λ for N = O(1). On the other hand, in the limit

N → ∞, which is required for the self-consistency of our approach, the same relation

implies that h → 0, independent of the precise values of λ and k. In other words, a

relaxation of Hubble expansion to zero takes place for very large N .

The question of what happens if we add a matter sector, which introduces a substantial

deviation from de Sitter cosmology, is open for two reasons: First, the renormalizability

of our model may rely crucially on the large symmetry of de Sitter spacetime [21], and it

is not clear which interacting field theories keep their predictivity on more general geome-

tries. On a Minkowski spacetime we know that these theories are of the Yang-Mills type,

and we would expect that their predictivity does not get spoiled by mild deformations of

this particular background. Second, we have no easy analytical handle on a general mat-

ter sector (subject to a product of finite, nonabelian gauge groups) in conjunction with

the above fermion model, although we believe that future investigations will gain deeper

insights into this issue. An interesting scenario would be that the relaxation of Planckian

vacuum energy density to zero is a step which precedes the liberation of finitely many

gauge symmetries being responsible for subsequent cosmology.

3.2 A Planck-scale axion

Let us now turn to the isosinglet Goldstone field ϕ, which plays the role of a Planck-scale

axion [8] if, by means of the chiral anomaly [4, 5], it couples to Yang-Mills theories in

phases with propagating gauge modes [3]. The interaction of the canonically normalized

field ϕ with a Yang-Mills theory is described by3

Lint ∼
ϕ

MP
tr F̃µνF

µν . (3.4)

Recall that the chiral anomaly occurs on top of a dynamical breakdown of the global

UA(N) symmetry carried by the fermions ψ. Integrating out (in addition to the fermions)

the ground-state portion of the gauge field F i
µν , the field ϕ acquires a potential of the

form [6, 7]
(

1 − cos
ϕ

MP

)

Λ4
YM , (3.5)

where ΛYM refers to the Yang-Mills scale. The Goldstone field ϕ, which naturally emerges

in the context of our model, can be interpreted as a Planck-scale axion responsible for the

late-time evolution of the Universe [3, 8]. Thus, within our approach, the physics of the

3For various reasons, which we may elaborate on in the future, it appears natural that chiral fermions

and gravitation emerge at the Planck scale from a confining SU(N = ∞) Yang-Mills theory. The Planck

mass MP would then naturally act as the Peccei-Quinn scale.
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relaxation of Planck-scale vacuum energy is ultimately connected with the physics of dark

energy today. This relates point A with point C in the Introduction.

It was pointed out in [23] that an oscillating axion field in FRW cosmology eventually

will dominate the energy density of a formerly radiation-dominated Universe, and that,

upon decay into photons, its fluctuations induce CMB anisotropies that no longer are of a

purely isocurvature nature.

4. Conclusions

We have developed a scenario for the relaxation of Planckian vacuum energy under the

assumption that N chiral fermions (microscopically) interact via the torsion term (1.1)

arising from the Holst action of general relativity. In the large-N limit, for which the

model is renormalizable in a de Sitter geometry [21], the Hubble constant H vanishes

for any fixed value of the renormalized cosmological constant. After integrating out the

fermionic degrees of freedom we find that two composite isosinglet fields play a crucial

role: a scalar field ρ is relevant for the early-time cosmology and for the above-mentioned

relaxation of the vacuum energy, while a pseudoscalar field ϕ emerges as an axion field,

which can play a crucial role for late-time cosmology, being responsible for the presently

observed small but nonzero value of the dark energy [1, 3, 8, 24].

In the evaluation of the effective potential for early cosmology care is needed in the

choice of the regularization scheme. Lacking a definite ultra-violet completion, a depen-

dence of the effective potential on arbitrary renormalization constants persists. In addition,

the renormalized Planck mass and cosmological constant depend on the condensate ρ. We

have elucidated how previous discussions in the literature [21, 22] correspond to different

choices of renormalization schemes. Fortunately, the small-ρ behavior (2.21) of the effective

potential, which is important for our relaxation mechanism, is not significantly affected by

these considerations: our ignorance about the values of the renormalization constants can

be absorbed into an O(1) rescaling of N .

It is important to stress that the minimum of the effective potential V̄eff(ρ,H) occurs

for ρmin 6= 0 as long as the parameter K, which measures the strength of the four-fermion

interaction, is positive. Thus condensation always takes place, contrary to the case of

Minkowski spacetime, for which the interaction strength must exceed a critical value. This

implies the existence of the (axion) field ϕ for all times. Since for a sufficiently small

number of independent Yang-Mills scales (ΛYM ≪MP ) for the gauge dynamics governing

the nongravitational sector the mass of the field ϕ is much smaller than MP (the scale of

H during inflation), this field may in addition serve as a curvaton [25]. That is, an almost

scale-invariant spectrum of isocurvature perturbations, imprinted into ϕ on super-horizon

scales in the final stage of inflation, triggers curvature perturbations and thus large-scale

structure formation upon its re-entry into the horizon during a much later epoch. That

the role of the curvaton can be played by a (pseudo) Goldstone boson of a dynamical chiral

symmetry breaking was discussed previously in [23, 26, 27]. We leave an analysis of this

and other interesting problems, such as the study of tunneling into anti-de Sitter spacetime

– 11 –



J
H
E
P
0
2
(
2
0
0
8
)
0
7
7

(in the case where the potential is unbounded from below) and the cosmological evolution

after inflation, for future study.
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A. Fierz transformation

The gravitationally-induced four-fermion interaction can be rewritten in the form

N
∑

i,j=1

(

ψ̄iγ5γ
µψi

) (

ψ̄jγ5γµψj

)

=
N

∑

i,j=1

[

(

ψ̄iψj

) (

ψ̄jψi

)

+
(

ψ̄iiγ5ψj

) (

ψ̄jiγ5ψi

)

+
1

2

(

ψ̄iγ
µψj

) (

ψ̄jγµψi

)

+
1

2

(

ψ̄iγ5γ
µψj

) (

ψ̄jγ5γµψi

)

]

,

where i, j are flavor indices. We now introduce the traceless generators tA of SU(N) (with

A = 1, . . . , N2 − 1), normalized such that Tr(tAtB) = 1
2
δAB . They obey the relation

∑

A

(tA)ij(tA)kl =
1

2
δilδkj −

1

2N
δijδkl .

This can be used to rewrite the flavor structure of the operators on the right-hand side of

the above relation in the form

N
∑

i,j=1

(

ψ̄iψj

) (

ψ̄jψi

)

=
1

N

(

ψ̄ψ
) (

ψ̄ψ
)

+
∑

A

(

ψ̄ tAψ
) (

ψ̄ tAψ
)

,

and similarly for the other Lorentz structures.
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